Part Number Hot Search : 
LH28F TCR2BE12 C1004 2SC44 XC17S Y7C13 N4114 BCR410W
Product Description
Full Text Search
 

To Download MAX2045 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-2728; Rev 0; 1/03
High-Gain Vector Multipliers
General Description
The MAX2045/MAX2046/MAX2047 low-cost, fully integrated vector multipliers alter the magnitude and phase of an RF signal. Each device is optimized for the UMTS (MAX2045), DCS/PCS (MAX2046), or cellular/GSM (MAX2047) frequency bands. These devices feature differential RF inputs and outputs. The MAX2045/MAX2046/MAX2047 provide vector adjustment through the differential I/Q amplifiers. The I/Q amplifiers can interface with voltage and/or current digital-to-analog converters (DACs). The voltage inputs are designed to interface to a voltage-mode DAC, while the current inputs are designed to interface to a currentmode DAC. An internal 2.5V reference voltage is provided for applications using single-ended voltage DACs. The MAX2045/MAX2046/MAX2047 operate from a 4.75V to 5.25V single supply. All devices are offered in a compact 5mm 5mm, 32-lead thin QFN exposed-paddle packages. The MAX2045/MAX2046/MAX2047 evaluation kits are available, contact factory for availability.
Features
o Multiple RF Frequency Bands of Operation 2040MHz to 2240MHz (MAX2045) 1740MHz to 2060MHz (MAX2046) 790MHz to 1005MHz (MAX2047) o 0.2dB Gain Flatness o 1 Phase Flatness o 3dB Control Bandwidth: 260MHz o 15dBm Input IP3 o 15dB Gain Control Range o Continuous 360 Phase Control Range o 6.5dB Maximum Gain for Continuous Phase o On-Chip Reference for Single-Ended Voltage-Mode Operation o 800mW Power Consumption o Space-Saving 5mm x 5mm Thin QFN Package o Single 5V supply
MAX2045/MAX2046/MAX2047
Applications
UMTS/PCS/DCS/Cellular/GSM Base Station Feed-Forward and Predistortion Power Amplifiers RF Magnitude and Phase Adjustment RF Cancellation Loops Beam-Forming Applications
Pin Configuration/Block Diagram
RFIN2 RFIN1 GND GND GND GND GND 26 GND 25
32
31
30
29
28
VI1 VI2 VQ1
27
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 9 2.5V REFERENCE OUTPUT STAGE CONTROL AMPLIFIER I 90 PHASE SHIFTER
24 23 22
GND GND RBIAS GND GND GND VCC VCC
Ordering Information
PART MAX2045ETJ-T MAX2046ETJ-T TEMP RANGE -40C to +85C -40C to +85C PIN-PACKAGE 32 Thin QFN-EP* 32 Thin QFN-EP* 32 Thin QFN-EP*
VQ2 II1 II2 IQ1 IQ2
MAX2045 MAX2046 MAX2047
CONTROL AMPLIFIER Q
21 VECTOR MULTIPLIER 20 19 18 17
MAX2047ETJ-T -40C to +85C *EP = Exposed paddle.
REFOUT
GND
GND
GND
GND
RFOUT1
QFN
________________________________________________________________ Maxim Integrated Products
RFOUT2
GND
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
ABSOLUTE MAXIMUM RATINGS
VCC to GND .............................................................-0.3V to +6V VI1, V12, VQ1, VQ2, RFIN1, RFIN2, RFOUT1, RFOUT2 ....................................-0.3V to VCC + 0.3V RFOUT1, RFOUT2 Sink Current..........................................35mA REFOUT Source Current.......................................................4mA II1, II2, IQ1, IQ2 ........................................................-0.3V to +1V II1, II2, IQ1, IQ2 Sink Current ...........................................+10mA Continuous RF Input Power (CW)...................................+15dBm Continuous Power Dissipation (TA = +70C) 32-Pin Thin QFN (derate 21.3mW/C above +70C) .......1.7W Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-40C to +150C Lead Temperature (soldering, 10s) .................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, no RF inputs applied, RF input and output ports are terminated with 50. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.)
PARAMETER Supply Voltage Range Operating Supply Current Differential Input Resistance, VI1 to VI2, VQ1 to VQ2 Common-Mode Input Voltage, VI1, VI2, VQ1, VQ2 Input Resistance, II1, II2, IQ1, IQ2 Reference Voltage VREFOUT VCM Single-ended resistance to ground REFOUT unloaded 150 2.3 SYMBOL VCC MAX2045 ICC MAX2046 MAX2047 Input resistance between VI1 and VI2 or VQ1 and VQ2 CONDITIONS MIN 4.75 120 120 120 6.5 TYP 5 160 160 160 9 2.5 200 2.45 250 2.6 MAX 5.25 200 200 200 11.5 k V V mA UNITS V
AC ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 2.14GHz (MAX2045), fIN = 1.9GHz (MAX2046), fIN = 915MHz (MAX2047), input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER RF Differential Input Impedance RF Differential Output Impedance RF Differential Load Impedance Continuous Phase Range 0 CONDITIONS MIN TYP 50 300 200 360 MAX UNITS Degrees
2
_______________________________________________________________________________________
High-Gain Vector Multipliers
MAX2045 ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 2.14GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER Frequency Range RF Input Return Loss RF Output Return Loss VOLTAGE MODE VI = VQ = 0.707V (radius = 1V) Power Gain VI = VQ = 0.5V (radius = 0.707V) VI = VQ = 0.25V (radius = 0.35V) VI = VQ = 0.125V (radius = 0.175V) Power-Gain Range Reverse Isolation Maximum Power Gain for Continuous Coverage of Phase Change Maximum Power Gain with Reduced Phase Coverage Group Delay Gain Drift Over Temperature Gain Flatness Over Frequency Phase Flatness Over Frequency Difference in gain between VI = VQ = 0.707V and VI = VQ = 0.125V Over entire control range 0 to 360 (radius = 1V) 7 3.4 -3 -8.7 15.7 -74 6.1 dB dB dB dB CONDITIONS MIN 2040 -14 -16.4 TYP MAX 2240 UNITS MHz dB dB
MAX2045/MAX2046/MAX2047
0 to 360 (radius = 1V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.707V (radius = 1V); UMTS, fIN = 2140MHz 100MHz Electrical delay removed, VI = VQ = 0.707V (radius = 1V), UMTS, fIN = 2140MHz 100MHz VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.5V (radius = 0.707V) VI = VQ = 0.25V (radius = 0.35V) VI = VQ = 0.125V (radius = 0.175V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.125V (radius = 0.175V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.125V (radius = 0.175V)
7 1.38 -0.027 0.21 0.2 -147.7 -148.3 -148.2 -148.1 6.7 9.3 15.2 14.7
dB ns dB/C dB Degrees
Output Noise Power
dBm/Hz
IP1dB IIP3
dBm dBm
_______________________________________________________________________________________
3
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
MAX2045 ELECTRICAL CHARACTERISTICS (continued)
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 2.14GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER CURRENT MODE Power Gain (Note 4) Power-Gain Range Gain Flatness Over Frequency Phase Flatness Over Frequency II1 = IQ1 = 4mA, II2 = IQ2 = 0mA II1 = IQ1 = 1mA, II2 = IQ2 = 0mA Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 = 0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA II1 = IQ1 = 4mA, II2 = IQ2 = 0mA; UMTS, fIN = 2140MHz 100MHz Electrical delay removed, II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 -8.7 14.9 0.27 0.8 dB dB dB Degrees CONDITIONS MIN TYP MAX UNITS
MAX2046 ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 1.9GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER Frequency Range RF Input Return Loss RF Output Return Loss VOLTAGE MODE VI = VQ = 0.707V (radius = 1V) Power Gain VI = VQ = 0.5V (radius = 0.707V) VI = VQ = 0.25V (radius = 0.35V) VI = VQ = 0.125V (radius = 0.175V) Power-Gain Range Reverse Isolation Maximum Power Gain for Continuous Coverage of Phase Change Maximum Power Gain with Reduced Phase Coverage Group Delay Gain Drift Over Temperature Difference in gain between VI = VQ = 0.707V and VI = VQ = 0.125V Over entire control range 0 to 360 (radius = 1V) 7.4 3.8 -2.5 -8.2 15.6 -76 6.5 dB dB dB dB CONDITIONS MIN 1740 -21.1 -21.7 TYP MAX 2060 UNITS MHz dB dB
0 to 360 (radius = 1V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.707V (radius = 1V) PCS, fIN = 1960MHz 100MHz DCS, fIN = 1842.5MHz 100MHz
7.4 1.54 -0.026 0.14
dB ns dB/C
Gain Flatness Over Frequency
dB 0.3
4
_______________________________________________________________________________________
High-Gain Vector Multipliers
MAX2046 ELECTRICAL CHARACTERISTICS (continued)
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 1.9GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER CONDITIONS PCS, fIN = 1960MHz 100MHz Electrical delay removed, VI = VQ = 0.707V (radius = 1V) DCS, fIN = 1842.5MHz 100MHz VI = VQ = 0.707V (radius = 1V) Output Noise Power VI = VQ = 0.5V (radius = 0.707V) VI = VQ = 0.25V (radius = 0.35V) VI = VQ = 0.125V (radius = 0.175V) IP1dB IIP3 CURRENT MODE Power Gain (Note 4) Power-Gain Range II1 = IQ1 = 4mA, II2 = IQ2 = 0mA II1 = IQ1 = 1mA, II2 = IQ2 = 0mA Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 = 0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA PCS, fIN = 1960MHz 100MHz DCS, fIN = 1842.5MHz 100MHz PCS, fIN = 1960MHz 100MHz DCS, fIN = 1842.5MHz 100MHz 6.6 -8.2 14.8 0.14 dB 0.33 0.8 Degrees 1.6 dB dB VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.125V (radius = 0.175V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.125V (radius = 0.175V) MIN TYP 1.3 Degrees 1.2 -146.8 -147.4 -147.4 -147.3 6.5 9.1 15.2 14.8 dBm dBm dBm/Hz MAX UNITS
MAX2045/MAX2046/MAX2047
Phase Flatness Over Frequency
Gain Flatness Over Frequency
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA
Phase Flatness Over Frequency
Electrical delay removed, II1 = IQ1 = 4mA, II2 = IQ2 = 0mA
_______________________________________________________________________________________
5
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
MAX2047 ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 915MHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER Frequency Range RF Input Return Loss RF Output Return Loss VOLTAGE MODE VI = VQ = 0.707V (radius = 1V) Power Gain VI = VQ = 0.5V (radius = 0.707V) VI = VQ = 0.25V (radius = 0.35V) VI = VQ = 0.125V (radius = 0.175V) Power-Gain Range Reverse Isolation Maximum Power Gain for Continuous Coverage of Phase Change Maximum Power Gain with Reduced Phase Coverage Group Delay Gain Drift Over Temperature Difference in gain between VI = VQ = 0.707V and VI = VQ = 0.125V Over entire control range 0 to 360 (radius = 1V) 8.4 5.1 -0.9 -6.3 14.7 -75 7.1 dB dB dB dB CONDITIONS MIN 790 -21.8 -11.7 TYP MAX 1005 UNITS MHz dB dB
0 to 360 (radius = 1V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.707V (radius = 1V) GSM, fIN = 942.5MHz 62.5MHz VI = VQ = 0.707V (radius = 1V) US cell, fIN = 881.5MHz 62.5MHz JCDMA, fIN = 850MHz 60MHz KDI/JDC/PDC, fIN = 820MHz 30MHz GSM, fIN = 942.5MHz 62.5MHz Electrical delay removed , VI = VQ = 0.707V (radius = 1V) US cell, fIN = 881.5MHz 62.5MHz JCDMA, fIN = 850MHz 60MHz KDI/JDC/PDC, fIN = 820MHz 30MHz
8.4 2.02 -0.024 0.25 0.13
dB ns dB/C
Gain Flatness Over Frequency
dB 0.1 0.1 0.9 1.1 Degrees 1.2 0.3
Phase Flatness Over Frequency
6
_______________________________________________________________________________________
High-Gain Vector Multipliers
MAX2047 ELECTRICAL CHARACTERISTICS (continued)
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40C to +85C, RBIAS = 280, fIN = 915MHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER CONDITIONS VI = VQ = 0.707V (radius = 1V) Output Noise Power VI = VQ = 0.5V (radius = 0.707V) VI = VQ = 0.25V (radius = 0.35V) VI = VQ = 0.125V (radius = 0.175V) IP1dB IIP3 CURRENT MODE Power Gain (Note 4) Power-Gain Range II1 = IQ1 = 4mA, II2 = IQ2 = 0mA II1 = IQ1 = 1mA, II2 = IQ2 = 0mA Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 = 0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA GSM, fIN = 942.5MHz 62.5MHz II1 = IQ1 = 4mA, II2 = IQ2 = 0mA US cell, fIN = 881.5MHz 62.5MHz JCDMA, fIN = 850MHz 60MHz KDI/JDC/PDC, fIN = 820MHz 30MHz GSM, fIN = 942.5MHz 62.5MHz US cell, fIN = 881.5MHz Electrical delay removed, 62.5MHz II1 = IQ1 = 4mA, JCDMA, fIN = 850MHz II2 = IQ2 = 0mA 60MHz KDI/JDC/PDC, fIN = 820MHz 30MHz 8.1 -6.2 14.3 0.25 0.12 dB 0.1 0.1 0.8 1.1 Degrees 1.3 0.4 dB dB VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.125V (radius = 0.175V) VI = VQ = 0.707V (radius = 1V) VI = VQ = 0.125V (radius = 0.175V) MIN TYP -147.5 -148.4 -148.6 -148.6 6.1 6.9 15.6 14.1 dBm dBm dBm/Hz MAX UNITS
MAX2045/MAX2046/MAX2047
Gain Flatness Over Frequency
Phase Flatness Over Frequency
Note 1: Guaranteed by design and characterization. Note 2: All specifications reflect losses and delays of external components (matching components, baluns, and PC board traces). Output measurements taken at the RF OUTPUT of the Typical Operating Circuit. Note 3: Radius is defined as (VI2 + VQ2)0.5. VI denotes the difference between VI1 and VI2. VQ denotes the difference between VQ1 and VQ2. For differential operation: VI1 = VREF + 0.5 VI, VI2 = VREF - 0.5 VI, VQ1 = VREF + 0.5 VQ, VQ2 = VREF - 0.5 VQ. For single-ended operation: VI1 = VREF + VI, VI2 = VREF, VQ1 = VREF + VQ, VQ2 = VREF. Note 4: When using the I/Q current inputs, maximum gain occurs when one differential input current is zero and the other corresponding differential input is 5mA. Minimum gain occurs when both differential inputs are equal.
_______________________________________________________________________________________
7
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2045)
(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
REFOUT AND SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE
230 220 SUPPLY CURRENT (mA) 210 200 190 180 170 160 150 SUPPLY CURRENT 140 -40 -15 10 35 60 85 TEMPERATURE (C) 2.43 VCC = 4.75V VCC = 5.0V VCC = 5.25V
MAX2045 toc01
INPUT RETURN LOSS vs. FREQUENCY
MAX2045 toc02
OUTPUT RETURN LOSS vs. FREQUENCY
V_1 = 2.55V TO 3.5V 13 OUTPUT RETURN LOSS (dB) 14 15 16 17 18 19 20 21 22
MAX2045 toc03
REFOUT LOADED WITH V_2
2.52 2.51 INPUT RETURN LOSS (dB) 2.50 2.49 2.48 2.47 2.46 2.45 2.44 REFOUT (V)
10 11 12 13 14 15 16 17 18 19 20
12
V_1 = 2.55V TO 3.5V
2000
2050
2100
2150
2200
2250
2300
2000
2050
2100
2150
2200
2250
2300
FREQUENCY (MHz)
FREQUENCY (MHz)
GAIN vs. FREQUENCY
MAX2045 toc04
GAIN vs. FREQUENCY
MAX2045 toc05
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
VCC = 4.75V TO 5.25V 10 5 0 GAIN (dB)
MAX2045 toc06
20 15 10 5 GAIN (dB) 0 -5 -10 -15 -20 -25 -30 2000 2050 2100 2150 2200 2250 V_1 = 2.55V V_1 = 2.75V V_1 = 2.625V V_1 = 3.5V V_1 = 3.0V
15 I_1 = 5mA 10 5 0 GAIN (dB) -5 -10 -15 -20 -25 -30 I_1 = 1mA I_1 = 0 2000 2050 2100 2150 2200 2250 I_1 = 2mA I_1 = 3mA I_1 = 4mA
15
-5 -10 -15 -20 -25 -30
2300
2300
2.50
2.75
3.00
3.25
3.50
3.75
4.00
FREQUENCY (MHz)
FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 2.50
MAX2045 toc07
REVERSE ISOLATION vs. FREQUENCY
MAX2045 toc08
OUTPUT NOISE POWER vs. FREQUENCY
-144.5 OUTPUT NOISE POWER (dBm/Hz) -145.0 -145.5 -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 V_1 = 3V V_1 = 2.75V V_1 = 2.55V V_1 = 2.625V
MAX2045 toc09
30 40 50 ISOLATION (dB) 60 70 80 90 100 110 120
TA = -40C
V_1 = 2.55V TO 3.5V
-144.0 V_1 = 3.5V
TA = +25C TA = +85C
GAIN (dB)
2.75
3.00
3.25
3.50
3.75
4.00
2000
2050
2100
2150
2200
2250
2300
2000
2050
2100
2150
2200
2250
2300
CONTROL VOLTAGE VI1, VQ1 (V)
FREQUENCY (MHz)
FREQUENCY (MHz)
8
_______________________________________________________________________________________
High-Gain Vector Multipliers
Typical Operating Characteristics (MAX2045) (continued)
(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2045 toc10
MAX2045/MAX2046/MAX2047
OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2045 toc11
INPUT P1-dB COMPRESSION vs. FREQUENCY
V_1 = 3.2V 8.5 8.0 INPUT P1-dB (dBm) VCC = 5.25V VCC = 5.0V
MAX2045 toc12
-144.0 -144.5 OUTPUT NOISE POWER (dBm/Hz) -145.0 -145.5 -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 2.50 2.75 3.00 3.25 TA = +25C 3.50 3.75 TA = +-40C TA = +85C
-144.0 -144.5 OUTPUT NOISE POWER (dBm/Hz) -145.0 -145.5 -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 VCC = 4.75V 2.50 2.75 3.00 3.25 3.50 3.75 VCC = 5.0V VCC = 5.25V
9.0
7.5 7.0 6.5 6.0 5.5
VCC = 4.75V
4.00
4.00
5.0 2000 2050 2100 2150 2200 2250 2300 FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
INPUT P1-dB COMPRESSION vs. FREQUENCY
MAX2045 toc13
INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2045 toc14
INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1)
15 14 INPUT P1-dB (dBm) 13 12 11 10 9 8 7 6 5 TA = +85C TA = +25C
MAX2045 toc15
9.0 8.5 8.0 INPUT P1-dB (dBm) 7.5 7.0 6.5 6.0 5.5 5.0
V_1 = 3.2V
16 15 14 INPUT P1-dB (dBm) 13 12 11 10 9 8 7 6 5 VCC = 4.75V 2.50 2.75 3.00 3.25 3.50 3.75 VCC = 5.0V VCC = 5.25V
16
TA = +85C TA = +25C
TA = -40C
TA = -40C 2.50 2.75 3.00 3.25 3.50 3.75 4.00
2000
2050
2100
2150
2200
2250
2300
4.00
FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
IIP3 vs. FREQUENCY
MAX2045 toc16
IIP3 vs. FREQUENCY
MAX2045 toc17
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2.50 VCC = 5.25V
MAX2045 toc18
16.0 15.5 15.0 IIP3 (dBm)
V_1 = 3.2V VCC = 5.25V
16.0 V_1 = 3.2V 15.5 15.0 IIP3 (dBm) TA = +85C
IIP3 (dBm)
VCC = 4.75V
VCC = 5.0V
14.5 14.0 13.5 13.0 2000 2050 2100 2150 VCC = 4.75V
VCC = 5.0V
14.5 14.0 13.5 13.0 TA = -40C TA = +25C
2200
2250
2300
2000
2050
2100
2150
2200
2250
2300
2.75
3.00
3.25
3.50
3.75
4.00
FREQUENCY (MHz)
FREQUENCY (MHz)
CONTROL VOLTAGE VI1 , VQ1, (V)
_______________________________________________________________________________________
9
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2045) (continued)
(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
GAIN vs. PHASE
10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 0
MAX2045 toc19
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2.50 RADIUS = 1 TA = +85C
S21 PHASE vs. FREQUENCY
MAX2045 toc20
RADIUS = 0.875
85.5 85.0 84.5 PHASE (DEGREES) 84.0 83.5 83.0 82.5 82.0 81.5 81.0 80.5 80.0
V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT 5V VCC = 5.25V
IIP3 (dBm)
TA = -40C
TA = +25C
GAIN (dB)
RADIUS = 0.75 RADIUS = 0.5 RADIUS = 0.375 RADIUS = 0.25 RADIUS = 0.125 45 90 135 180 225 270 315 360 PHASE (DEGREES) RADIUS = 0.625
VCC = 5.V VCC = 4.75V
2.75
3.00
3.25
3.50
3.75
4.00
2000
2050
2100
2150
2200
2250
2300
CONTROL VOLTAGE VI1 , VQ1, (V)
FREQUENCY (MHz)
S21 PHASE vs. FREQUENCY
MAX2045 toc22
S21 PHASE vs. FREQUENCY
MAX2045 toc23
S21 PHASE vs. FREQUENCY
V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT +25C TA = -40C
MAX2045 toc24
80.0 79.5 79.0 78.5 PHASE (DEGREES) 78.0 77.5 77.0 76.5 76.0 75.5 75.0 74.5 74.0
V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT 5V
100 95 PHASE (DEGREES) 90 85 80 75
90 85 PHASE (DEGREES) 80 75 70 65
VCC = 5.25V
V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT +25C
TA = -40C
TA = +25C
VCC = 5V VCC = 4.75V
TA = +25C
70 65 2000 2050 2100 2150 2200 2250 2300 2000 2050 2100
TA = +85C 2150 2200 2250 2300
TA = +85C 60 2000 2050 2100 2150 2200 2250 2300
FREQUENCY (MHz)
FREQUENCY (MHz)
FREQUENCY (MHz)
GROUP DELAY vs. FREQUENCY
1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00
MAX2045 toc25
SWITCHING SPEED
DIFFERENTIAL CONTROL SIGNAL SEE SWITCHING SPEED SECTION IN THE APPLICATIONS INFORMATION
MAX2045 toc26
V_1 = 2.55V TO 3.5V
GROUP DELAY (ns)
-0.7V
+0.7V MIN GAIN, ORIGIN
2000
2050
2100
2150
2200
2250
2300
GAIN
MAX GAIN, Q3
MAX GAIN, Q1
SWITCHING SPEED (1ns/div)
FREQUENCY (MHz)
10
______________________________________________________________________________________
MAX2045 toc21
86.0
High-Gain Vector Multipliers
Typical Operating Characteristics (MAX2046)
(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
REFOUT AND SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE
220 210 SUPPLY CURRENT (mA) 200 190 180 170 160 150 140 -40 -15 10 35 60 85 TEMPERATURE (C) SUPPLY CURRENT VCC = 4.75V VCC = 5.0V VCC = 5.25V
MAX2046 toc27
MAX2045/MAX2046/MAX2047
INPUT RETURN LOSS vs. FREQUENCY
MAX2046 toc28
OUTPUT RETURN LOSS vs. FREQUENCY
13 OUTPUT RETURN LOSS (dB) 14 15 16 17 18 19 20 V_1 = 2.55V TO 3.5V
MAX2046 toc29
REFOUT LOADED WITH V_2
2.52 2.51 2.50 REFOUT (V) 2.49 2.48 2.47 2.46 2.45 2.44 INPUT RETURN LOSS (dB)
10 12 14 16 18 20 22 24
V_1 = 2.55V TO 3.5V
12
21 22 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
GAIN vs. FREQUENCY
MAX2046 toc30
GAIN vs. FREQUENCY
MAX2046 toc31
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
15 10 5 VCC = 4.75V TO 5.25V
MAX2046 toc32
20 15 10 5 GAIN (dB) 0 -5 -10 -15 -20 -25 -30 V_1 = 2.55V V_1 = 2.75V V_1 = 2.625V V_1 = 3.5V V_1 = 3.0V
15 I_1 = 5mA 10 5 0 GAIN (dB) -5 -10 -15 -20 -25 -30 I_1 = 1mA I_1 = 0 I_1 = 2mA I_1 = 3mA I_1 = 4mA
20
GAIN (dB)
0 -5 -10 -15 -20 -25 -30 2.50 2.75 3.00 3.25 3.50 3.75 4.00
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 2.50
MAX2046 toc33
REVERSE ISOLATION vs. FREQUENCY
MAX2046 toc34
OUTPUT NOISE POWER vs. FREQUENCY
-144.5 OUTPUT NOISE POWER (dBm/Hz) -145.0 -145.5 -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 V_1 = 3V V_1 = 2.75V V_1 = 2.55V V_1 = 2.625V V_1 = 3.5V
MAX2046 toc35
30 40 50 ISOLATION (dB) 60 70 80 90 100 110 120
TA = -40C
V_1 = 2.55V TO 3.5V
-144.0
TA = +25C TA = +85C
GAIN (dB)
2.75
3.00
3.25
3.50
3.75
4.00
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
______________________________________________________________________________________
11
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2046) (continued)
(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2046 toc36
OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2046 toc37
INPUT P1-dB COMPRESSION vs. FREQUENCY
V_1 = 3.2V 8.5 8.0 INPUT P1-dB (dBm) VCC = 5.0V
MAX2046 toc38
-144.0 -144.5 OUTPUT NOISE POWER (dBm/Hz) -145.0 -145.5 -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 2.50 2.75 3.00 3.25 3.50 3.75 TA = +25C TA = -40C TA = +85C
-144.0 -144.5 OUTPUT NOISE POWER (dBm/Hz) -145.0 -145.5 -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 VCC = 5.0V VCC = 5.25V VCC = 4.75V
9.0
7.5 7.0 6.5 6.0 5.5 5.0
VCC = 5.25V
VCC = 4.75V
4.00
2.50
2.75
3.00
3.25
3.50
3.75
4.00
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
INPUT P1-dB COMPRESSION vs. FREQUENCY
MAX2046 toc39
INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2046 toc40
INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1)
15 14 INPUT P1-dB (dBm) 13 12 11 10 9 8 7 TA = +85C TA = +25C
MAX2046 toc41
9.0 8.5 8.0 INPUT P1-dB (dBm) 7.5 7.0 6.5 6.0
V_1 = 3.2V
16 15 14 INPUT P1-dB (dBm) 13 12 11 10 9 8 7 6 5 VCC = 4.75V 2.50 2.75 3.00 3.25 3.50 3.75 VCC = 5.0V VCC = 5.25V
16
TA = +25C
TA = +85C
TA = -40C 5.5 5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
6 5 4.00 2.50
TA = -40C 2.75 3.00 3.25 3.50 3.75 4.00
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
IIP3 vs. FREQUENCY
MAX2046 toc42
IIP3 vs. FREQUENCY
V_1 = 3.2V 16.5 16.0 TA = +85C IIP3 (dBm) IIP3 (dBm) 15.5 15.0 14.5
MAX2046 toc43
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2.50 2.75 VCC = 5.25V
MAX2046 toc44
17.0 16.5 16.0 IIP3 (dBm) 15.5 15.0 14.5 14.0 13.5 13.0
V_1 = 3.2V
17.0
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
VCC = 4.75V
VCC = 5.0V
14.0 13.5 13.0
TA = -40C TA = +25C
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1 , VQ1, (V)
12
______________________________________________________________________________________
High-Gain Vector Multipliers
Typical Operating Characteristics (MAX2046) (continued)
(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2.50 2.75 TA = +85C 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 0
MAX2046 toc45
MAX2045/MAX2046/MAX2047
GAIN vs. PHASE
RADIUS = 1 RADIUS = 0.875 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155
MAX2046 toc46
S21 PHASE vs. FREQUENCY
V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT 5V
MAX2046 toc47
TA = -40C
TA = +25C
RADIUS = 0.75 RADIUS = 0.625 RADIUS = 0.5 RADIUS = 0.375 RADIUS = 0.25 RADIUS = 0.125 45 90 135 180 225 270 315 360 PHASE (DEGREES)
PHASE (DEGREES)
IIP3 (dBm)
GAIN (dB)
VCC = 5.25V VCC = 5.V
VCC = 4.75V 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1 , VQ1, (V)
S21 PHASE vs. FREQUENCY
-155 -156 -157 -158 -159 -160 -161 -162 -163 -164 -165 -166 -167 -168 -169 -170 V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT 5V VCC = 5.25V -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190
MAX2046 toc48
S21 PHASE vs. FREQUENCY
V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT +25C TA = -40C -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190
MAX2046 toc49
S21 PHASE vs. FREQUENCY
V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT +25C TA = -40C
MAX2046 toc50
PHASE (DEGREES)
PHASE (DEGREES)
VCC = 5.V
TA = +25C
PHASE (DEGREES)
TA = +25C TA = +85C
VCC = 4.75V
TA = +85C
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
GROUP DELAY vs. FREQUENCY
MAX2046 toc51
SWITCHING SPEED
DIFFERENTIAL CONTROL SIGNAL SEE SWITCHING SPEED SECTION IN THE APPLICATIONS INFORMATION
MAX2045 toc52
1.90 1.85 1.80 1.75 GROUP DELAY (ns) 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30
V_1 = 2.55V TO 3.5V
-0.7V
+0.7V MIN GAIN, ORIGIN
1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz)
GAIN
MAX GAIN, Q3
MAX GAIN, Q1
SWITCHING SPEED (1ns/div)
______________________________________________________________________________________
13
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2047)
(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
REFOUT AND SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE
210 REFOUT LOADED WITH V_2 200 SUPPLY CURRENT (mA) 190 180 170 160 150 SUPPLY CURRENT 140 -40 -15 10 35 60 85 TEMPERATURE (C) 2.45 VCC = 5.0V VCC = 4.75V VCC = 5.25V 2.48 2.47 2.46
MAX2047 toc53
INPUT RETURN LOSS vs. FREQUENCY
MAX2047 toc54
OUTPUT RETURN LOSS vs. FREQUENCY
V_1 = 2.55V TO 3.5V 9 OUTPUT RETURN LOSS (dB) 10 11 12 13 14 15 16
MAX2047 toc55
2.52 2.51 INPUT RETURN LOSS (dB) 2.50 2.49 REFOUT (V)
10 12 14 16 18 20 22 24 26 28 30 32
8
V_1 = 2.55V TO 3.5V
700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
GAIN vs. FREQUENCY
MAX2047 toc56
GAIN vs. FREQUENCY
MAX2047 toc57
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
15 10 5 VCC = 4.75V TO 5.25V
MAX2047 toc58
20 15 10 V_1 = 2.75V GAIN (dB) V_1 = 3.5V V_1 = 3.0V
15 10 5 GAIN (dB) 0
I_1 = 5mA
20
I_1 = 4mA
0 -5 -10 -15 V_1 = 2.55V -20 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) V_1 = 2.625V
I_1 = 3mA -5 -10 -15 -20 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) I_1 =1mA I_1 = 2mA
GAIN (dB)
5
0 -5 -10 -15 -20
I_1 = 0
-25 -30 2.50 2.75 3.00 3.25 3.50 3.75 4.00 CONTROL VOLTAGE VI1, VQ1 (V)
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2047 toc59
REVERSE ISOLATION vs. FREQUENCY
V_1 = 2.55V TO 3.5V 40 50
MAX2047 toc60
OUTPUT NOISE POWER vs. FREQUENCY
MAX2047 toc61
20 15 10 5 GAIN (dB) 0 -5 -10 -15 -20 -25 -30 -35 2.50 2.75 3.00 3.25 3.50 3.75 TA = +85C TA = +25C TA = -40C
30
-144 OUTPUT NOISE POWER (dBm/Hz) -145 -146 -147 -148 -149 V_1 = 3V -150 -151 V_1 = 2.75V V_1 = 2.55V V_1 = 2.625V V_1 = 3.5V
ISOLATION (dB)
60 70 80 90 100 110 120
4.00
700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
CONTROL VOLTAGE VI1, VQ1 (V)
14
______________________________________________________________________________________
High-Gain Vector Multipliers
Typical Operating Characteristics (MAX2047) (continued)
(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2047 toc62
MAX2045/MAX2046/MAX2047
OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2047 toc63
INPUT P1-dB COMPRESSION vs. FREQUENCY
V_1 = 3.2V 8.5 8.0 INPUT P1-dB (dBm) 7.5 7.0 6.5 6.0 VCC = 4.75V VCC = 5.0V VCC = 5.25V
MAX2047 toc64
-145.0 -145.5 OUTPUT NOISE POWER (dBm/Hz) -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 -149.5 -150.0 2.50 2.75 3.00 3.25 3.50 3.75 TA = +25C TA = -40C TA = +85C
-145.0 -145.5 OUTPUT NOISE POWER (dBm/Hz) -146.0 -146.5 -147.0 -147.5 -148.0 -148.5 -149.0 -149.5 -150.0 VCC = 4.75V VCC = 5.0V VCC = 5.25V
9.0
5.5 5.0 3.75 4.00 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
4.00
2.50
2.75
3.00
3.25
3.50
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
INPUT P1-dB COMPRESSION vs. FREQUENCY
V_1 = 3.2V
MAX2047 toc65
INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1)
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 2.50 2.75
MAX2047 toc66
INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1)
8.5 8.0 INPUT P1-dB (dBm) 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 TA = -40C TA = +25C TA = +85C
MAX2047 toc67
9.0 8.5 8.0 INPUT P1-dB (dBm) 7.5 7.0 6.5 6.0
9.0
TA = +25C
INPUT P1-dB (dBm)
TA = +85C
VCC = 5.0V VCC = 5.25V
TA = -40C 5.5 5.0 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
VCC = 4.75V
3.00
3.25
3.50
3.75
4.00
2.50
2.75
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
IIP3 vs. FREQUENCY
MAX2047 toc68
IIP3 vs. FREQUENCY
V_1 = 3.2V 18.0 17.5 IIP3 (dBm) 17.0 16.5 16.0 TA = +25C TA = -40C IIP3 (dBm)
MAX2047 toc69
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
19 18 17 16 15 14 13 12 11 10 9 8 7 2.50 2.75 VCC = 5.25V
MAX2047 toc70
19.0 18.5 18.0 17.5 IIP3 (dBm) 17.0 16.5 16.0 15.5 15.0 14.5 14.0
V_1 = 3.2V
18.5
VCC = 5.25V
VCC = 4.75V VCC = 5.0V
VCC = 4.75V
15.5
VCC = 5.0V
15.0 TA = +85C 14.5 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1 , VQ1 (V)
______________________________________________________________________________________
15
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2047) (continued)
(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25C, unless otherwise noted.)
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2.50 11 9 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15 0
MAX2047 toc71
GAIN vs. PHASE
MAX2047 toc72
S21 PHASE vs. FREQUENCY
145 140 PHASE (DEGREES) 135 VCC = 5.25V 130 125 120 VCC = 5.V 115 110 VCC = 4.75V 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT 5V
MAX2047 toc73 MAX2045 toc78 MAX2047 toc76
RADIUS = 1
RADIUS = 0.875
150
TA = -40C
IIP3 (dBm)
GAIN (dB)
TA = +25C TA = +85C
RADIUS = 0.75 RADIUS = 0.625 RADIUS = 0.5 RADIUS = 0.375 RADIUS = 0.25 RADIUS = 0.125 45 90 135 180 225 270 315 360 PHASE (DEGREES)
2.75
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1 , VQ1 (V)
S21 PHASE vs. FREQUENCY
MAX2047 toc74
S21 PHASE vs. FREQUENCY
MAX2047 toc75
S21 PHASE vs. FREQUENCY
160 150 PHASE (DEGREES) 140 130 120 110 TA = +25C TA = -40C V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT +25C
150 145 140 PHASE (DEGREES) 135 130 125 120 115 110 105 100
V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT 5V
160 150 PHASE (DEGREES) 140
V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT +25C
VCC = 5.25V
TA = -40C 130 TA = +25C 120 110
VCC = 5.V
VCC = 4.75V 100 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
TA = +85C 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
100 90 TA = +85C 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
GROUP DELAY vs. FREQUENCY
MAX2047 toc77
SWITCHING SPEED
DIFFERENTIAL CONTROL SIGNAL SEE SWITCHING SPEED SECTION IN THE APPLICATIONS INFORMATION
2.7 2.6 2.5 GROUP DELAY (ns) 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6
V_1 = 2.55V TO 3.5V
-0.7V
+0.7V MIN GAIN, ORIGIN MAX GAIN, Q1
GAIN
MAX GAIN, Q3
700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz)
SWITCHING SPEED (1ns/div)
16
______________________________________________________________________________________
High-Gain Vector Multipliers
Pin Description
PIN 1 2 3 4 5 6 7 8 9 10, 11, 14, 15, 16, 19, 20, 21, 23-27, 30, 31, 32 12 13 17, 18 22 28 29 Exposed Pad NAME VI1 VI2 VQ1 VQ2 II1 II2 IQ1 IQ2 REFOUT FUNCTION Noninverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ). Inverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ). Noninverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ). Inverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ). Noninverting in-phase current-control input. This pin can only sink current. It cannot source current. Inverting in-phase current-control input. This pin can only sink current. It cannot source current. Noninverting quadrature current-control input. This pin can only sink current. It cannot source current. Inverting quadrature current-control input. This pin can only sink current. It cannot source current. 2.5V Reference Output. Integrated reference voltage provides a 2.5V output for single-ended voltagecontrol applications. For single-ended operation, connect REFOUT to the inverting voltage inputs (VI2, VQ2).
MAX2045/MAX2046/MAX2047
GND
Ground
RFOUT1 RFOUT2 VCC RBIAS RFIN1 RFIN2 --
Noninverting RF Output Inverting RF Output Supply Voltage Bias Setting Resistor. Connect a 280 (1%) resistor from this pin to ground to set the bias current for the IC. Noninverting RF Input Inverting RF Input Exposed Pad. Exposed pad on the bottom of the IC should be soldered to the ground plane for proper heat dissipation and RF grounding.
Detailed Description
The MAX2045/MAX2046/MAX2047 provide vector adjustment through the differential I/Q amplifiers. Each part is optimized for separate frequency ranges: MAX2045 for fIN = 2040MHz to 2240MHz, MAX2046 for fIN = 1740MHz to 2060MHz, and MAX2047 for fIN = 790MHz to 1005MHz. All three devices can be interfaced using current- and/or voltage-mode DACs. The MAX2045/MAX2046/MAX2047 accept differential RF inputs, which are internally phase shifted 90 degrees to produce differential I/Q signals. The phase and magnitude of each signal can then be adjusted using the voltage- and/or current-control inputs. Figure 1 shows a typical operating circuit when using both current- and voltage-mode DACs. When using only one of the two, leave the unused I/Q inputs open.
RF Ports
The RF input and output ports require external matching for optimal performance. See Figures 1 and 2 for appropriate component values. The output ports require external biasing. In Figures 1 and 2, the outputs are biased through the balun (T2). The RF input ports can be driven differentially or single ended (Figures 1, 2) using a balun. The matching values for the MAX2045/ MAX2046 were set to be the same during characterization. An optimized set of values can be found in the MAX2045/MAX2046/MAX2047 Evaluation Kit data sheet.
I/Q Inputs
The control amplifiers convert a voltage, current, or voltage and current input to a predistorted voltage that controls the multipliers. The I/Q voltage-mode inputs can be operated differentially (Figure 1) or single ended (Figure 2). A 2.5V reference is provided on-chip for single-ended operation.
17
______________________________________________________________________________________
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
C1 RF INPUT L1*
T1
C2 RFIN2 RFIN1
C3
GND
GND
GND
GND
GND 26
32
31
30
29
28
27
VOLTAGEMODE DAC C5
C4
VI1 VI2 VQ1 VQ2 II1 II2 IQ1 IQ2
25
GND
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 9 2.5V REFERENCE OUTPUT STAGE CONTROL AMPLIFIER I 90 PHASE SHIFTER
24 23 22
GND GND RBIAS GND GND GND VCC VCC VCC C16 C17 R1
C6 C7 C8 C9 C10 C11
MAX2045 MAX2046 MAX2047
CONTROL AMPLIFIER Q
21 VECTOR MULTIPLIER 20 19 18 17
CURRENTMODE DAC
RFOUT1
REFOUT
RFOUT2
GND
GND
GND
GND
L2 DESIGNATION C14 RF OUTPUT C1 C2, C3 C4-C16 C17 L1* L2 R1 T1 T2 MAX2045 3.3pF 220pF 22pF 0.01F 1.6pF CAP 10nH 280 1:1 balun 4:1 balun DESCRIPTION MAX2046 MAX2047 3.3pF 47pF 220pF 47pF 47pF 22pF 0.01F 0.01F 15nH 1.6pF CAP 39nH 10nH 280 280 1:1 balun 1:1 balun 4:1 balun 4:1 balun
C15 C13 T2
*POPULATED WITH AN INDUCTOR OR CAPACITOR,
DEPENDING ON THE VERSION.
Figure 1. Typical Operating Circuit Using Differential Current- and Voltage-Mode DACs
18
______________________________________________________________________________________
GND
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
C1 RF INPUT L1*
T1
C2 RFIN2 RFIN1
C3
GND
GND
GND
GND
GND 26
32
31
30
29
28
27
VOLTAGEMODE DAC
VI1 C4 VI2 VQ1 C6 VQ2 II1 II2 IQ1 IQ2
25
GND
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 9 2.5V REFERENCE OUTPUT STAGE CONTROL AMPLIFIER I 90 PHASE SHIFTER
24 23 22
GND GND RBIAS GND GND GND VCC VCC VCC C16 C17 R1
MAX2045 MAX2046 MAX2047
CONTROL AMPLIFIER Q
21 VECTOR MULTIPLIER 20 19 18 17
REFOUT
GND
GND
RFOUT1
RFOUT2
GND
GND
C12
L2 DESIGNATION C14 RF OUTPUT C1 C2, C3 C4, C6, C12-C16 C17 L1* L2 R1 T1 T2 MAX2045 3.3pF 220pF 22pF 0.01F 1.6pF CAP 10nH 280 1:1 balun 4:1 balun DESCRIPTION MAX2046 MAX2047 3.3pF 47pF 220pF 47pF 47pF 22pF 0.01F 0.01F 15nH 1.6pF CAP 39nH 10nH 280 280 1:1 balun 1:1 balun 4:1 balun 4:1 balun
C15 C13 T2
*POPULATED WITH AN INDUCTOR OR CAPACITOR,
DEPENDING ON THE VERSION.
Figure 2. Typical Operating Circuit Using Single-Ended Voltage Mode DACs
______________________________________________________________________________________
GND
19
High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047
On-Chip Reference Voltage
An on-chip, 2.5V reference voltage is provided for single-ended control mode. Connect REFOUT to VI2 and VQ2 to provide a stable reference voltage. The equivalent output resistance of the REFOUT pin is approximately 80. REFOUT is capable of sourcing 1mA of current, with <10mV drop-in voltage. As the differential control signal approaches zero, the gain approaches its minimum value. This appears as the null in the Typical Operating Characteristics. The measurement results include rise-time errors from the crystal detector (specified by manufacturing to be approximately 8ns to 12ns), the comparator (approximately 500ps), and the 500MHz BW oscilloscope (used to measure the control and detector signals).
Applications Information
RF Single-Ended Operation
The RF input impedance is 50 differential into the IC. An external low-loss 1:1 balun can be used for singleended operation. The RF output impedance is 300 differential into the IC. An external low-loss 4:1 balun transforms this impedance down to 50 single-ended output (Figures 1 and 2).
Layout Issues
A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed pad underneath the package. This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad. The MAX2045/MAX2046/MAX2047 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Bias Resistor
The bias resistor value (280) was optimized during characterization at the factory. This value should not be adjusted. If the 280 (1%) resistor is not readily available, substitute a standard 280 (5%) resistor, which may result in more current part-to-part variation.
Switching Speed
The control inputs have a typical 3dB BW of 260MHz. This BW provides the device with the ability to adjust gain/phase at a very rapid rate. The Switching Speed graphs in the Typical Operating Characteristics try to capture the control ability of the vector multipliers. These measurements were done by first removing capacitors C4-C7 to reduce driving capacitance. The test for gathering the curves shown, uses a MAX9602 differential output comparator to drive VI1, VI2, VQ1, and VQ2. One output of the comparator is connected to VI1/VQ1, while the other is connected to VI2/VQ2. The input to the vector multiplier is driven by an RF source and the output is connected to a crystal detector. The switching signal produces a waveform that results in a 0.7V differential input signal to the vector multiplier. This signal switches the signal from quadrant 3 (-0.7V case), through the origin (maximum attenuation), and into quadrant 1 (+0.7V case). The before-and-after amplitude (S21) stays about the same between the two quadrants but the phase changes by 180.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass the VCC pins with 10nF and 22pF (47pF for the MAX2047) capacitors. Connect the high-frequency capacitor as close to the device as possible.
Exposed Paddle RF Thermal Considerations
The EP of the 32-lead thin QFN package provides a low thermal-resistance path to the die. It is important that the PC board on which the IC is mounted be designed to conduct heat from this contact. In addition, the EP provides a low-inductance RF ground path for the device. It is recommended that the EP be soldered to a ground plane on the PC board, either directly or through an array of plated via holes. Soldering the pad to ground is also critical for proper heat dissipation. Use a solid ground plane wherever possible.
Chip Information
TRANSISTOR COUNT: 599
20
______________________________________________________________________________________
High-Gain Vector Multipliers
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
D2
C L
MAX2045/MAX2046/MAX2047
0.15 C A
D
b D2/2
0.10 M C A B
PIN # 1 I.D.
D/2
0.15 C B
k
PIN # 1 I.D. 0.35x45
E/2 E2/2 E (NE-1) X e
C L
E2
k L
DETAIL A
e (ND-1) X e
C L
C L
L
L
e 0.10 C A 0.08 C
e
C
A1 A3
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE 16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm
APPROVAL DOCUMENT CONTROL NO. REV.
21-0140
C
1 2
COMMON DIMENSIONS
EXPOSED PAD VARIATIONS
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220. 10. WARPAGE SHALL NOT EXCEED 0.10 mm.
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE 16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm
APPROVAL DOCUMENT CONTROL NO. REV.
21-0140
C
2 2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21 (c) 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
QFN THIN.EPS
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of MAX2045

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X